Enantioselective effect of trifloxystrobin in early-stage zebrafish (Danio rerio) embryos: Cardiac abnormalities impacted by E,E-trifloxystrobin enantiomer

Abstract

Trifloxystrobin (TFS) is one of the extensively used strobilurin fungicides, which is composed of four enantiomers and its active form is E,E-TFS. In this study, we assess the acute toxicity of four enantiomers, E,E−, E,Z-, Z,E−, and Z,Z-TFS in zebrafish (Danio rerio) embryos. Among the four enantiomers, only E,E-TFS was found to be acutely toxic, with an estimated LC50 value of 0.68 mg/L. Treatment with E,E-TFS resulted in various phenotypic changes in the embryos, including pericardial and yolk-sac edema, spine curvature, and blood pooling. And it shortened the whole body length in the treated embryos by increasing the total intersegmental vessel numbers using a Tg(fli1a:EGFP) zebrafish line. Further study using Tg(cmlc2:EGFP) zebrafish line revealed that E,E-TFS treatment was associated with cardiac malformations, a failure of heart function, and a lowered heartbeat rate at the concentration of 0.25 mg/L. Also, the differential gene expression analysis identified significant down-regulation of vmhc and cacna1c genes encoding ventricular myosin heavy chain and calcium voltage-gated channel subunit alpha 1C, which are crucial for heart development. These results suggest the need for regular monitoring of E,E-TFS enantiomers after field application and further research into their potential chronic effects on environmental organisms.

Publication
Environ Pollut, 327, 121537
Kyeongnam Kim
Kyeongnam Kim
Postdoctoral Researcher

My research interests include agricultural and environmental toxicology.